Jump to content

So, you want to make a knife. OR,

Recommended Posts

What you didn't learn on "Forged in Fire" 

Everyone needs to read,



This thread you are reading is basically an update in some ways. It reflects some changes in equipment and is a reaction to a new generation of "knife curious" potential bladesmiths and knife makers.

 There have been some new developments and perhaps more consensus on some things has emerged in the past 13 years .


This is not meant to be any definitive everything for everyone project, merely a common and basic starting point for someone who wants to give it a try.

Most of what is here can be found in threads throughout the forum. I just thought it would be nice to have some of it in one place.


The answer to almost any knifemaking question can easily be found on this forum by a simple Google search of the forum---   

key word (s) site:bladesmithsforum.com" 

(The forum's search function is not really the best way to go)

My goals are to answer some often asked common questions, provide a loose framework for someone to work within to make their first knife as far as the steel and its handling goes. The actual " shaping" of the steel is only going to be lightly touched on. It seems to be a small part of the questions and new threads started on the forum. There are plenty of threads about that part but there are too many details to do the subject justice.

There are some things that are absolute, some very flexible, and some that are strongly suggested.

Absolute is safety. Please read and familiarize yourself with the topics in the "Shop Safety" section of the forum. They are there for a reason. One of the warnings that has arisen of late concerns galvenized metal. DO NOT attempt to heat galvenized metal in a forge or otherwise. It produces toxic fumes and can be deadly. Besides that, the steels that are galvenized are not of much use in knifemaking anyway.

To begin with, have every detail of the design worked out before anything else. Besides the fact that it will keep you from having an "uh oh" moment with a handful of wet epoxy and parts it will also allow you to see what is actually possible before you paint yourself in a corner and not have a way of accomplishing what you started out to do.

A common example of this is in the area of guards and scales or handles. Study these things on knives you can actually handle and see why some have "stick tangs" or "bolsters" or how "pommels" are attached. 

One thing that commonly happens is someone who gets pretty far down the road working on a blade and they ask "what kind of edge should I put on it?"

This should really be a big part of the project from the beginning. There are may options Scandanavian, convex,hollow ground etc. The maker should have their choice in mind from the start. It would probably be a good idea to get in the practice of examining every knife you can to determine the type of edge it has and how that fits in to its profile, design, grind the bevels and their purpose.

A piece of steel may be used to make a cold chisel, a hatchet or a skinning knife. Each may work well at its intended task but their interchangability is limited in part by edge geometry.

All of the types can be searched for and their are some excellent graphic examples on the internet waiting for a general search.

When you have that clear in your mind it is time to assess your equipment. Do not let a lack of "professional tools" slow you down. Remember great knives were made by bladesmiths for a long time with little equipment. Here is where a divergence occurs and you must be aware of it and the implications of your choice.

There are generally two ways to make a knife from piece of steel: stock removal or forging, but bear in mind the two are not completely mutually exclusive. For instance even if you are a great 'smith you are still going to use tools in finishing that are also useful in stock removal and in fact you are "removing stock" in the final steps. Conversely if you are stock removing when you get to the heat treating, hardening and tempering you will need some type of forge that would also be suited to forging. So let's take a look at an idea for stock removing from a very basic tool level. 

A bench vice would be close to neccessary but if the right sturdy bench is available clamps and a support board under the blade will do. 

For shaping or "profiling" a bench grinder, with the stone wheels would be a nice thing to have, again elbow grease and creativty will do. Perhaps using a hacksaw to cut sections close to the profile might be a possibility.

We should wander into the area of steel choice for a moment because one of the first thing most everyone does is get their first piece of steel. Brand new steel is STRONGLY suggested for several reasons: in our modern era cutlery steel is downright cheap (in the long run) ,although it generally has to be ordered in around four-foot sections and shipping is positively ridiculous, it pays for itself as opposed to going somewhere scrounging to get a piece of mystery steel who's use history and even actual composition is questionable. REMEMBER not all leaf or coil springs are 5160, not all saw blades are L-6, not all bearings are 52100 not all files are W-2, and on and on. Once the steel has been made into something, unless the steel type is marked on that object there are very few sure things. These differences are critical when heat treating or even just deciding whether a piece of steel is worth bothering with. It is also significant to remember that salvaged mystery steels are most likely already hardened and tempered for their original use, now you have to figure out how to anneal it, which will be specific to it's alloy, which you don't know for sure, before you can work with the piece (reasonably for your tools) or heat treat or harden and temper. Yes folks HAVE worked a blade out of mystery steel without annealing but to advise someone to start that way is like helping them learn how to cook an omlette by starting out with " first gather firewood and build campfire...". 

If that isn't convincing enough think about when something goes wrong and you have to ask for help on the forum. It is about a 50/50 chance that the problem is related to the steel alloy ( or the answer to the question is) without knowing the steel for sure answering is problematic. A problem with a "known" steel will get a useful answer quickly. Each alloy has its own "language" and most makers speak several but have no idea what language your mystery steel speaks.

A word on "stainless steels" not reccomended for beginners- most difficult if even possible (depending on alloy) to forge. Heat treating properly is complicated and not for a beginner or anyone with just basic equipment. Yes, you can get some stainless to "harden" but what is the grain structure like ? What percentage of the carbides did you get into solution? Stainless steel blades, not optimally heat treated, hardened and tempered, are not as good as a basic carbon steel properly treated with basic equipment. No equivocation about it. Period.

It only takes one learning experience to prove the value of buying new steel. Even when everything has gone right using mystery steels, I have lost track of the number of people who have said "....but it was sooo much easier the first time I used new steel."

If I had to pick one power tool that I personally would want first I would have to say "some form of electric drill", for me at least. I think I have probably put more things in the chuck of a 3/8" hand drill and used trying to make a knife than anyone I know. Stones, sanding drums, flap sanders, all with limited success but I have yet to find anything that drills a hole better than a drill, imagine that. A drill press is great but I and others have managed with a hand drill.

Files rank up at the top of the neccessary list. Do a search on the term "drawfiling" and learn. If you already have a couple then use them for the first blade. If you are using new steel you will know quickly whether they are working or not. Also do a search for "filing jig". I wish that idea had been around years ago. There are many types of files and different price and quality levels. Use what you have or do your research before buying. 

"Wet or Dry" or similar abrasive paper in grits up to 600 or 800 are good to have as well.

Of course the upscale option is the belt grinder. It is a toss up between forges and belt grinders as to which is the most talked about tool on the forum. Anvils are nipping at their heels .

There are so many options if one wants to acquire a belt grinder it would take a book to cover the topic. The only thing that comes even close to a majority agreeing on is that it is probably best to start out with a 2x72 from the start if you can. The benefits to the most popular size just plain outweigh the advantages of any other size. Past that, 2 wheel, 4 wheel, home made, store bought, all reliable brands, each category has supporters. Again, there is a ton of information on the forum waiting for a Google search.

( I do feel compelled to give one warning at this time. The Oregon Blademaker models have been getting good reviews and as a result knockoffs cheaply made overseas have been showing up. These low grade copies are not even trying to offer themselves as cheaper alternatives. They have even copied OBM's advertising and are similarly priced. They are very close to being some form of fraud. I don't own an OBM, although it was a top contender when I upgraded, I ran into the copies, which have horrible reviews from those conned into them, while comparison shopping.)

We do not really need to discuss forges in depth. Lord knows there are some very good threads about them on the forum including the pinned threads. Let it be enough to simply and broadly cover the options.

Solid fuel forges, be they charcoal or coal are the oldest type obviously and they have their strengths and weaknesses. If one of these is chosen "for economic reasons" beware. You still have to feed the beast that means buying coal or charcoal or taking the time and expense to acquire proper wood and build a method of converting it to charcoal. This takes time and bites into the economic reasons. It is also an outdoor only option unless suitable hooding and vents are built. (which doesn't do much for the economics argument.) You will also need a suitable air supply, some form of electric fan "plumbed" in. Many of us started that way, some continue to do it. If the circumstances allow there is absolutely nothing wrong with it at all. It can be a great choice. It just takes the right situation to actually make it, either financially or time efficient. If you have the desire, your climate and fuel supplies allow don't let the "old fashioned" factor cause doubt. Many fine blades are still being made that way. It is a good way to "get your feet wet" at the least. If it's your best option then go for it.

Propane forges come in two, general, flavors: "blown" where a fan is used and "venturi" or naturally aspirated. Each has their own advantages and disadvantages. It is quite possible to build some designs very cheaply and rival a solid fuel forge in initial building cost.

The physical and practical difference between the two is in the burner. A "blown" forge has a very simple burner and the flame is pushed by the air thrust in the burner by a fan of some sort. The "venturi" forge uses a bit more complicated burner with a small jet that uses the pressure of the propane tank and the vacuum effect to draw air into the burner. There are seemingly endless debates over which is "better" or "cheaper to run" . I have come to the conclusion that the quality of the construction and design has much to do with it. A good one of either is better than a poor one of the other and if both are set up optimally in equal forges and used by the same person the difference would be minimal. DIY versions built "for cheap" depend on what YOU have or can get "cheaply" . If you work area has electricity and you can get the fan cheap a blower might be the way to go OTOH if that isn't the case then you may want a venturi. If you don't feel comfortable building the burner part (which is dirt simple with a blower) and you want to buy the burner I would suggest a higher end venturi model from one of the folks that make reputable forges. This is because there are very few, if any, blown burners being sold seperately that are "plug in and play" ready. There are several people making cheap venturi burners but great care should be taken, if one goes that way, to research the "customer satisfaction" level and bear in mind the level of experience of those who report. Someone who just built the first forge they've ever used may not realize that the burner hasn't been set up optimally or efficiently.

 There are a lot of poorly designed forges out there that are being sold cheaply. Let us say "under $200". These are almost always "venturi" type since they don't have to include a "blower" which allows them to be cheaper. The pity is that some of them contain most of the material that would be used to make a much better forge IF they were designed properly. It is a "buyer beware" situation. To actually "beware" you have to be educated. That is where Google searching this forum comes in.

 If you decide to build your own do not just copy what you see on someone's advertising site. Just because they have pictures on Ebay does not mean they make a good forge. At this point in time we have at least one member here who is very generous with his time, sells many of the materials needed to build and would be glad to help.

You really need to set aside a few hours, wash your "Google-Fu" uniform, tie your sash properly, sit down comfortably with nourishment and refreshments and start with " forges site:bladesmithsforum.com"

While we are on the topic of heat we can, very simply, handle the tempering issue. You must, in the vast, huge, majority of cases "temper" the blade immediately after hardening. This, at the very basic level, involves "baking" the blade in an oven at a specific temperature depending on the steel and the hardness desired. It is entirely possible to use your kitchen oven but not a great idea for a few reasons. There is a simple alternative. A cheap, used, thrift store toaster oven, a cheap oven thermometer (found in the grocery store baking aisle. Ovens of all types are just not to be trusted to work as accurately as a cheap, grocery store thermometer), a tray that fits in the oven filled with sand and you are good to go. Whether the kitchen stove or toaster oven is used the sand tray preheated as the oven heats will level out the up and down cycles of most electric ovens of all types and makes. A thin fire brick can be used in place of the sand tray if that is easier to acquire.

When we get to the "forging tools" side of things everything said before about tools applies. The only other things needed, since the forge is already on the list, are an anvil-type object, something to hold the hot steel, and a hammer to hit it with.

The dead simplest and cheapest "tongs" I ever used were a long handled pair of plumber's " channel locks" . Those and my upgrade to "vise grips" taught me to "move with a purpose" when handling hot steel. But, there has been nothing better when I've used my little "one-brick forge" .The hammer is only slightly more complicated. It should really be a hammer designed for hitting metal. Sometimes Dad's old carpenter's hammer will work and sometimes it's an old "rim tempered" make that does not like to be smacked on steel and will dangerously shed chunks eventually. It should also be, as well as can be done, matched to the object used as an anvil. If you end up improvising a 20# stump anvil a 4# hammer may may not be as useful as a big ball pein hammer. Remember that heavier is not always better. 

Anvils are definitely a topic all of their own and that is just the ones designed to be anvils. It is impossible to list all of the things in the world that could be used in place of an "official" anvil. The existing threads on anvils are worth reading BEFORE buying ANY anvil. Some "improvised" anvils are much better than some of the "Anvil Shaped Objects" being sold today. With all of the improvised options it is not that hard to get by quite well, making blades, for a long time while searching for a good anvil ( based on the advice in the threads) at a reasonable price. Just as a small example of an improvised anvil, one of the best is a section of a forklift tine. That would work much better than some of the cheap, new "ASOs" out there and a lot of the older anvil as well. Once again there are a multitude of threads on the topic.

Now we can focus on steel choice. Again, to make sure it set in, you CAN use mystery steels especially if you HAVE EXPERIENCE judging spark patterns on a power grinder and if you know how to make a test piece, harden it, break it. This will just make sure the steel is hardenable, THEN, you can make another piece and this time go through all of you proposed heat treating steps harden it, break it and then, if you again have experience, you can examine the grain structure and figure out if you have the ideal heat treat dialed in. If not you get to try all over again. From there you have to research the proper tempering temperature for the Rockwell hardness level you want. Bear in mind that there are some steels that will "air harden" this is an important thing to know. It can be very frustrating to try and do something as simple as drill the holes for the pins to hold the handles on if the heat from drilling hardens the very spot you are drilling. If it still seems to be worth it to use mystery steel, fly to it. First however go to the "Metalurgy and other enigmas" section of the forum and read the pinned " Junkyard Steel Facts" thread to get an idea of what you are dealing with.


You can start with a new, known steel and enjoy the fact that all of that has already been done for you and the optimal methods are easily found and monotonously repeatable.

Salvaged mystery steels can have a place if you are willing to work at them but I, for one, would like to see every beginner have a successful experience their first time out. It makes it easier to retain the positive lessons learned from success than dwelling on the causes of failure. The craft is about constant improvement and it is difficult to be consistent in developing skills with unknown variables being tossed in the learning mix.

It is almost unanamously the suggestion that, for a novice using new steel, 1084 steel is the optimal choice. This steel is equally as good for forging or stock removal. It can be heat treated very close to perfectly with simple equipment and it will produce a knife ( when well designed and executed) that will be equal to most all factory made carbon steel knives, by most practicle measurements. In addition it is a "language" that most makers speak and diagnosing issues is rather simple given all of the combined experience available. It gives a common foundation to discuss the various adpects of bladesmithing/knifemaking, so that other useful things can be learned faster.

One of the most often mentioned alternatives to ordering 1084, and a very good option, is finding a spring shop in your area and seeing if they use 5160 steel and if it would be possible to acquire some of their "drops" or cut offs, scrap. For our purposes it works well and the heat treat methods for 1084 are compatible. If available it's an excellent option if it is true 5160. 

To give just the most cursory view of steel without getting bogged down in creating an encyclopedia I will use the already mentioned 1084 steel as a basic example. The "84" references the fact that the steel contains .84% carbon. This is about all the carbon needed to form a good cutting edge. It as the highest level of carbon that will go into solution without other elements to make it complicated to deal with. Most steels that have more carbon than that become "complex steels" due to other alloying elements added for various purposes. These elements, in most but not all cases, add complications to the heat treating process among other complications. Bear in mind that very few steels are intended primarily as "knife steels". Most steels are designed for industrial, manufacturing, production, construction and such uses. "We" just borrow them and adapt them to our purposes. 

The very basic makeup of 1084 makes it easy, relatively, to heat treat, harden and temper. The same applies to 5160.

BTW your local Ace Hardware or Home Depot does not carry steel stock that is suitable for making decent knives.

Naturally the choice on dimensions for the new steel is divided again by " forging vs stock removal" . This is subdivided on an individual basis by the maker's design.

Remember, with forging you will be moving steel, with stock removal you will be removing steel. 

For starting out forging I think 1/4" is about the right thickness if you remember that you don't need the piece to start at what you want for a finished dimension- you are going to move it to those dimensions. For stock removal I have to go with 3/16". This of course will be a bit thin for a " Rambo kills two bears, three bad guys, and drops a fir tree " knife but let us think about this for a moment.

New to making, do you really want to invest the steel to make a 4 1/2" (minimum) handle, 9" + blade on your first try? Wouldn't it be more practical to make a smaller, 4" bladed skinner/ hunter/EDC, where you have smaller dimensions to deal with? Match the width to your design. Get your "chops" down on smaller designs and save the "impressive Bowie that will make men jealous and women swoon" until your making skills are... well... "impressive". 

It is probably a good time to point out that trying to start out making "Damascus" multi layer/multi steel blades from the "get go" is not a very good idea at all. Rather like having your first driving lesson behind the wheel of a triple trailer semi. Too much going on at once. Imagine that you are trying to learn two new languages at once. You have to be aware that some steels will not readily weld to each other and, in fact, some steels don't want to weld to themselves. Better to have a good foundation in what to do with a simple piece of steel, and do it properly without excessive complications. 

If you are stock removing I will mention a "Flintstone era" trick I used for my first few stock removal blades. Without having any machinists layout dye I took a sketch I made on paper and then wrapped the steel in white painter's masking tape and transferred the design to the tape with carbon paper. The tape didn't last long but it allowed me to set in the lowest points, where the most stock had to be removed, first and they, then, served as reference points. It also gave me the chance to evenly start the pullouts on both sides. ( the "pull out"is the point, in front of the ricasso where the taper of the blade, from spine to cutting edge begins, or lower than the spine if the design calls for it.) 

It is reccommended for a first knife to bypass the instinct to make a "sabre ground" blade and go to a "flat ground" design however. Getting the bevels on both sides of the blade to match up precisely is more difficult than it appears.

A few other commonalities between stock removal and forging need to be addressed. the need to, whenever possible, plan ahead and drill any needed holes BEFORE heat treating and hardening. The reasons should be self evident. Although hardening does not always include the tang it will have been subjected to the heat treat and may not like the drill. There are ways to do it. The other thing is "distal taper". This the tapering of the blade from its start at the ricasso to the tip. Most knife designs include this feature save for some with a "Scandanavian" blade geometry and inexpensive kitchen knives. 

A very important thing to bear in mind, no matter how you are making your blade is to avoid having any major sharp corners on the blade when going into the heat treat and hardening. Hardening is extremely stressful on the steel. If, during or after the quench, the stressed steel encounters a ninety-degree corner it is going to want to crack at that point. This is most common in stick or hidden tangs with a shoulder behind the ricasso. Don't square these corners until after the stress has been relieved by the tempering cycle (s). 

Another thing to mention is to not get the cutting edge too thin before the heat treating work. Too thin and it will lose its useful carbon in the heat treat. About the thickness of a dime or a hair thicker should do.

The old instructions for carving a bear from a block of wood applies,

" simply look at that block of wood and cut off anything that doesn't look like a bear."

Forging a blade to shape is a bit more complicated and very difficult to try and teach in words. Fortunately there is ample advice on this forum that's just a Google search away.

. I would suggest learning about pre-forming the tip shape as this generally causes the first "What the ????" moment for the first time 'smith. Understand that hot steel has its limits. It will not tolerate being hit when it is either too hot or too cold. If you get it too hot it may crumble under the hammer. Too cold and you will create microfractures (cracks) that will surprise you later on during the quench or when you are finishing the blade. 

It is difficult to describe steel temperatures by color because everyone "sees" color differently and different light conditions in different shops affect how individuals perceive colors. This makes describing "too hot" problematic and we have to rely on safe generalities. To be safe, for the inexperienced, let us just say for now, when the color changes from bright orange to a yellow is a good place to "stop heating and start beating". Too cold is easier. "When it loses color and stops moving under the hammer stop hitting it."

Moving hot steel with a hammer isn't difficult, just hit it and it will move. The trick is to get it to move how and where you want it to. Practice is the key for those learning on their own. Keeping it simple and getting it right is the best way to learn.

Let's jump over the actual shaping of the steel by either method at this point and move to the heat treating because this is a common constant no matter how the blade is shaped. Besides that IMO it is pretty difficult to give a lot of advice on shaping a blade by stock removal or forging without having the reader just copying the favorite design of the writer and there is a massive amount of info already on the forum for those who are willing to search. There is also a certain " I know what I'm going to make" factor, which after all, is what you want to do .

I am going to avoid using technical jargon any more than is absolutely neccessary. I know some folks dote on terminology but I also know that other folks eyes glaze over when a paragraph is filled with words they've never heard before. The proper terminology is available with a search if one is so inclined

The basic idea is as follows ( remember BASIC). A piece of steel has to be hardened to make a useful knife. It has to be tempered to stay in one piece and not be brittle in either the body or cutting edge.

A piece of steel should be heat treated so as to have the size and orientation of its grain optimized for the purpose of making a good knife.

"Heat treating" is actually a rather broad term used to describe any application of heat, prior to hardening and tempering, intended to have a positive effect on the finished knife. Heat Treating can also be applied to the whole process to include the hardening and tempering but most 'smiths prefer to seperate the hardening and tempering into their own discussions for clarity. A good idea.

There are two other terms that one runs into in the heat treating realm " normalizing" and "annealing" the first is pretty straight forward. Take the steel up past the "decalescence point" ( discussed in the upcoming pararaphs) and let it cool down in still air. This is comparable to a "neutral " state for practical purposes.True annealing, or softening, is more complex that it would seem. Just as there is no "across the board -works on everything" method or temperatures for heat treating and hardening, (with the exception of the decalescence point for most, but still not all steels)softening, or annealing, has the same complexities ( sometimes worse IMO ) there are a ton of "old wives tales" methods that are called " annealing. Most really aren't actually annealing though they MIGHT make a given steel easier to work by a little bit. Beware however that some of these "backyard" methods, when used on some steels, may actually have the opposite effect. Complex, air hardening steel can actually be made harder to work by some so-called "annealing" methods. ( been there, done that, got the T-shirt, burned a hole in it.)

Using a new steel annealing need not concern us but normalizing is not a bad idea at all for a blade that is done with the forging process but needs machining or heavy filing. It would do no harm at all to normalize before the full heat treating process and a good case can be made for doing so.

Heat treating a steel like 1084 is fairly straight forward . Many say that, if it has been purchased new from certain dealers and used for stock removal it doesn't need heat treating prior to hardening. Others say that if the steel has been forged then the forging and heats will have done it as long as the steel wasn't overheated. Who is right ? I am not sure but I do know that if I give every blade at least a couple of heat treating cycles, regardless of forged or stock removal, I feel like I have done the best I can. 

Just as the debate about "if" heat treating there are debates about "how" most folks have a favorite technique but all of them will depend on one big word that the new 'smith must learn " decalescence". This is also crucial to the hardening process. 

When a steel is heated up to a certain point a visually observable change happens. It is perfect indicator that the steel has reached the proper temperature for quenching but it is also a point to look for in heat treating. Observing the steel in the forge one can see, somewhere in the orange/yellow level, shadows start to dance on the steel. This indicates the structure of the steel is changing to a form to a point that it is ready for hardening and, as luck would have it, for making a good blade. When the heat increases the shadows disappear and the intensity of the glow increases notably. This is full decalescence. 

For heat treating 1084 I would suggest taking it to the full decalescence, letting it cool to ambient temperature the taking it up to a point where a magnet doesn't want to stick to the steel but not near decalescence, let it cool again and the heat it to just where the eye can detect the beginning of a dull red color. I would do this cycle twice.

There is some debate about whether a magnet is useful. It is NOT an indicator of proper quenching temperature for 99% of all blade-use steels no matter what the guy down the street says. I am of the camp that thinks it makes a good way to help determine the temperature of any magnetic steel because unlike decalescence, which varies widely with the steel and its alloying elements, all steel loses its attraction to a magnet at 1417 F, or very close to that. If one observes the color of the steel at that point, in those conditions, one has a visual mile marker for temperature. If one decides to do the heat treating cycle with the second step below non-magnetic they the have a visual reference. This can be established on the way to decalescence.

Assuming 1084 is being used then the hardening and tempering couldn't be more simple. Also assuming the reader is on a budget they are in luck. It does not require an expensive quenching oil. Simple canola oil does very nice. It just needs to be heated, by a hot piece of scrap steel, to around 120-130 F or just hot enough to be uncomfortable to the touch. 

It should be pointed out that in most cases water is not worth considering as a quenching medium and certainly not for a beginner who has reached that point with all of the work they have put in. Water just loves to crack blades. No matter what the specs on a steel say, their suggestions are based on a thicker piece for different applications. Blades are thin and don't like the stress of hardening. There are ways experienced 'smiths can use water for some steels and some purposes, but you can bet that several broken blades were made before the 'smith was "experienced".

Have the oil heated in a metal container deeper than the length of the blade. Wear heavy gloves, watch the blade heat to full decalescence, with a simple steel hold it there for up to 5 minutes if you wish, some do some don't, then quench tip down in the oil. Do not move the blade from side to side unless you really want it to warp. Hold the blade in for a " 6 Mississippi" count. Pull the blade back out for the same length of time then back in the oil 'till it cools. Of note, and a good reason for the gloves, check the blade visually for any warping when you pull it from the initial quench. Very often a warp can be straightened by hand, in gloves, before its temperature gets below about 400 degrees F.

With heat more is not better. Unless you are working with a complex steel with special requirements because of its alloy taking a simple steel too far above the recalescence point after heat treating will defeat the goal of making a good blade. The grain will grow too large to make a good cutting edge and the blade will be fragile by comparison to a properly treated blade.

If you have used a known steel and if you know what decalescence looks like and it was above that point when you quenched it in an appropriate oil then there is little need to file test it for hardness at that point. There are a couple of reasons not to, the first being it wastes time when you should be getting it in the tempering oven and the steel is still brittle. In order to actually test the steel you have to file through scale and a thing called "decarborization" on the blade. That is hard on files and you really shouldn't put much pressure on an untempered blade.

Now put the blade in the oven that you cleverly preheated to 400 degrees . Put it on the sand tray or brick already mentioned and preheated in the oven and give it two one-hour cycles cooling to ambient out of the oven in between.

When you take it out of the oven for the last time, it's intact and hardened and tempered you have cleared most all of the hurdles in making a knife.

A note for those interested in trying to produce an " Hamon" on their first knife. Resisting the urge to mention it's not a good idea, it is best to use a different steel than 1084 or 5160. It would most definitely be best for them to start with a new, known steel. Many steels including most mystery steels do not make good hamon. A new piece of 1075 plus a good deal of reading threads on the topic would be a good start. Hamons are largely decorative only on a knife-sized blade. If you are convinced you want to try, again, Google search the forum. Bladesmiths here have more experience and success than any other place in the world IMO.

Polishing and cleaning up a blade with start up tools is pretty straight forward. Use a file to get the unwanted crud off the blade and bring it out of its "shell" . When you have filed what you want as smooth as you can then bring out the abrasive sheets (sandpaper) back the paper with a rigid backer and set to work. It is advisable to use some form of lubricant with the abrasie paper. A light oil or some use "Windex" since it cleans up easily. Start with one grit in one direction and one orientation (along the blade length or across it) when you have gotten the finish as uniform as possible go to the next higher grit and sand in the opposite direction and orientation. Keep repeating through your various grits.

Every option for putting the "furniture" on a blade (handle, guards etc) deserve its own thread. Fortunately there are plenty of those no further away than a Google search.

A few very general observations about techniques and materials. 

Seriously consider moving away from the "5 minute" epoxies. Yes we are all in a hurry when we get that close to the finish line but quick setting epoxy gives little margin for error and induces stress to future projects after you have your first epoxy "whoopsie". 

"Stabilized" products are no better than the material stabilized. To put it in basic computer speak " garbage in, garbage out". You really shouldn't use anything because it was stabilized that is too fragile without stabilizing.

Pay as much attention to the feel as you do to look.

In the long run I find knife making by any method to be very similar to what I learned when I started out as a residential/commercial painter. The prep was everything. As my boss said. "90% of the skill is in what you don't see when you look at it."

That is my idea of basic information that could be helpful to a person who wants to make their first knife and it might be useful to others. It is a tiny fraction of the information that exists, little of it is even very original.

Further information on anything knifemaking related is available on the forum for the time it takes to do a Google search.

There are always folks here who are willing to help and give you advice and share their experience.










Edited by Vern Wimmer
Typos that bugged me.
  • Like 6
  • Thanks 3
Link to comment
Share on other sites

It is a lot of words.  Maybe an edit so there is a list of links at the top?  Like,



Gas forge burners: https://www.bladesmithsforum.com/index.php?/topic/26862-my-take-on-a-venturi-burner/


and so on?


  • Thanks 1
Link to comment
Share on other sites

Thanks for the postive comments.

I would love to do the links but ,

A: I am working from just a phone.

B: our service here is third world at best. I can't even get 3G for more than 20 minutes at a time and most is 1X with frequent total loss of service.

Sorry, I wanted to do better but that's what I have.

Link to comment
Share on other sites

22 minutes ago, Vern Wimmer said:

Thanks for the postive comments.

I would love to do the links but ,

A: I am working from just a phone.

B: our service here is third world at best. I can't even get 3G for more than 20 minutes at a time and most is 1X with frequent total loss of service.

Sorry, I wanted to do better but that's what I have.

The fact that you typed all of that out on a phone just made me die inside a little bit.  But this is a great addition to the forum.  Thanks for typing that up.  

“In the midst of winter, I found there was, within me, an invincible summer."  -Albert Camus


Link to comment
Share on other sites

1 hour ago, Vern Wimmer said:

A: I am working from just a phone.

How..On..earth..did you do that all on a phone..:blink:

Any way thanks for doing that this helped me a TON oh and I have heard that fire brick soaks up a lot of heat does refractory cement help insulate it at all?


Link to comment
Share on other sites

5 minutes ago, Conner Michaux said:

How..On..earth..did you do that all on a phone..:blink:

Any way thanks for doing that this helped me a TON oh and I have heard that fire brick soaks up a lot of heat does refractory cement help insulate it at all?


I have written with a pencil by campfire light. On a manual typewriter by Coleman lantern. 

The point of the brick, or sand tray, is precisely TO "soak up heat". Technically, they would be called "heat sinks". You use them to balace out the up-down cycles of the oven, as ovens, theoretically "average" the desired temp going from plus 20 degrees to minus 20 degrees (or so) . A heat sink levels that out for the object placed on in or near it.


Link to comment
Share on other sites

31 minutes ago, Conner Michaux said:

What about for a forge? Don't you want all the heat to stay on the inside of it?

I thought you were asking about tempering ovens. 

I never messed with coating bricks beyond the homemade muck in my solid fuel forges. Just as a SWAG I wonder about expansion and contraction rates of the bricks being problematic to the adhesion of a true refractory product. 

To my simian mind the best use of hard fire brick is either the simple forge (pinned topic) or a "brickpile" of loose adjustable bricks, everytime I see a forge interior made of multiple hard bricks I can't help thinking that someone forgot something. If it's big enough to have been made from a metal shell (freon tank, mailbox, etc) with kaowool type insulation, then it probably should have been. 

I am rather surprised that we don't see a lot of square box exteriors with round fireboxes inside. Not exactly an engineering impossibility. Might have advantages in getting a proper tangental entry of the flame.

Link to comment
Share on other sites

16 hours ago, Conner Michaux said:

What about for a forge? Don't you want all the heat to stay on the inside of it?

The only problem with putting a firebrick in a forge is still the heat sink effect.  It takes a brick much longer to get up to heat than it does kaowool with a thin coat of refractory cement.  A single half-brick in the bottom of the forge can be nice to protect the wool from flux and accidental hole-poking, but it will add ten or fifteen minutes to the time it takes to get to welding heat in most forges.  Then the brick will keep the forge extremely hot for hours after you shut off the gas, which is not a good thing if you move your forge in and out of a building to use it.  It in no way aids efficiency or fuel use.  It's purely a hard floor.

Going up to your original question, brick and mortar do not insulate.  They just resist breaking down at heat.  The wool is what insulates.  Well, you can buy what are called "insulating firebrick," which are white, soft, kind of expensive, lightweight (as in feel like a hunk of Styrofoam), and handy to have around to put hot things down on, but they also have zero resistance to flux and start off fragile, and will eventually crumble.

Link to comment
Share on other sites

That brings me back to the question What should I build my forge out of? Fire brick with kaowool on the inside? Fire brick with soft brick on the inside? Just fire brick? Theres just so many opinions out there about what and what not to do and its just confusing :wacko:

Edited by Conner Michaux
Link to comment
Share on other sites

If you are doing it yourself and are using a kaowool type insulation just chuck the whole concept of bricks being involved at all. Use a metal "body". There are many cylindrical objects that will work. There are a ton of threads on forge builds. Compared to, say, a freon tank or even the right mailbox, for a medium sized forge, bricks just don't have anything to offer.

The exception is the "quicky" forge recently designed by one of our members. If you already have the bricks and the right turkey fryer burner.

Link to comment
Share on other sites

Soo if I were to cut both sides of an empty propane tank and wrap the inside with kaowool that would work right?

Edited by Conner Michaux
Link to comment
Share on other sites

That is in fact what a great many forges are made from.  Just be aware cutting old propane tanks is both dangerous and nasty.  You absolutely cannot use a cutting torch or plasma cutter on tanks of any kind.  For old propane tanks the procedure is to remove the valve and fill it with water, then let it stand several days.  Then you can empty it and use a cutting disk on a angle grinder, a sawzall-type reciprocating saw if you can drill a big enough hole to start the blade in, or just a series of small almost-connected holes you then cut out with a chisel.  The whole time it's going to stink of methyl mercaptan, the odor they put in there to let you know if it's leaking.  There may even be a layer of black jellylike goo in the bottom.

A new empty tank isn't too expensive and won't have any of the nastiness/explosiveness issues.

Whatever you use to put the wool in, the wool must be coated with a layer of some type of refractory.  Satanite, Cast-o-lite, Mizzou, and AP Green #36 are popular choices for this.

Link to comment
Share on other sites

A lotof good forges have been made from 20# propane tanks with the ends opened up. A bit of a trick to do safely. Then a pipe has to be welded or a bolt on flange attached to hold the burner. A stable base is also needed. The, to me, huge advantage over a pile of bricks stuffed with kaowool, or other proper blanket insulation is that you can coat the insulation with a refractory coating to fix the fibers in place so you don't inhale them. Hard to do with a pile of bricks

ETA. Alan beat me to it.

Edited by Vern Wimmer
Link to comment
Share on other sites

Okay im reading about this and it says to spray a little bit of water on the wool, then mix of the refractory mortar with some water till it gets to a sour cream thickness. Then brush it on to the wool at do short cycles with the forge on and off. Good thing to do or bad?

Edited by Conner Michaux
Link to comment
Share on other sites

I have cut many propane tanks and have never had an issue. Just dont cut it with a cutting torch like alan said. I would go to your local mechanics shop amd see if they have a freon bottle laying around. That is your best bet and your not spending $30 on a new tank justbto cut it open.

Edited by Jeremy Blohm
Link to comment
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
  • Create New...